Intramolecular Coupling Reaction of Phosphino-thioenolato Iron(ii) Complexes with Alkynes. Crystal Structure of [Fe{n³-Ph₂P-CH=C(But)S-C=CHPh}(CO)(PMe₃)₂]BF₄

Abdoulaye Samb,a Bernard Demerseman,a* Pierre H. Dixneuf,a* and Carlo Meallib

^a*Laboratoire de Chimie de Co-ordination Organique (UA-CNRS 4 151, Campus de Beaulieu, Universite de Rennes, 35042 Rennes Cedex, France*

lstituto per la Studio della Stereochemica ed Energetica dei Composti di Coordinazione del CNR, via Nardi 39, 50 132 Firenze, Italy

[FeCl{q*-Ph2PCH=C(R)S}(PMe3)(CO)(L)] complexes, prepared by ligand substitution, react with phenylacetylene in the presence of AgBF₄ or NaPF₆ and lead to carbon-sulphur bond formation between the β-phosphino-thioenolate ligand and the phenylvinylidene-iron intermediate, as shown by X -ray diffraction analysis.

Chelating β -phosphinoketonate ligands play an important role in promoting selective organometallic reactions such as nickel-catalysed alkene oligomerisation,¹ carbon-carbon bond forming reactions with carbon dioxide² or isocyanate,³ and the building of polydentate phosphines.4 Complexes of their sulphur analogues of type $\{\eta^2-Ph_2PCH=C(R)S\}M$ have been obtained only recently⁵ and display specific properties, especially as proton traps for the formation of polyfunctional tripodal ligands.6 We now report a new reaction leading to the coupling of the β -phosphinothioketonate ligand with a terminal alkyne which allows access to novel iron complexes containing functionalised polydentate phosphines.

Organometallic complexes with labile metal-halogen bonds are potential precursors of electrophilic vinylidene- and carbene-metal complexes on reaction with terminal alkynes.7 Nucleophilic properties could be expected for the β -phosphinothioketonate ligand co-ordinated to an iron(II) centre,⁶ and we have examined the reaction of derivatives of complex (1) , containing both the β -phosphinothioketonate ligand and an iron-chlorine bond with phenylacetylene .

The readily available but unstable complex **(1)** was converted (by treatment with a three-fold excess of PMe₃) into the more stable trimethylphosphine derivatives **(2)** and **(3)** (Scheme 1). Surprisingly, the reaction is strongly solvent dependent: at room temperature after 48 h, in hexane-ether (1 : 1) the monosubstituted product **(2)** is obtained in 95% yield and in dichloromethane the disubstituted complex **(3)** is selectively formed and isolated in *75%* yield; the transformation $(2) \rightarrow (3)$ in the presence of an excess of PMe₃ does

Figure 1. Molecular structure of $[Fe\{\eta^3-Ph_2P-CH=C(Bu)\}$ &CHPh}(CO)(PMe,),]BF, **(9a)** (ORTEP view). Selected bond distances (A) and angles (°): Fe-S 2.259(1), Fe-C(1) 1.725(3), Fe-C(2) 1.900(4), Fe-P(l) 2.228(1), Fe-P(2) 2.279(1), Fe-P(3) 1.332(5), C(4)-C(5) 1.316(6); C(l)-Fe-S(l) 162.7(1), C(2)-Fe-S(1) 50.4(1), Fe-C(2)-C(3) 162.1(3), S(l)-C(2)-C(3) 122.6(3), P(1)-Fe- $C(2)$ 85.4(1). 2.258(l), **S(** 1)-C(2) 1.799(3), **S(** 1)-C(5) 1.816(5), C(2)-C(3)

not occur in dichloromethane at 25 °C, but only takes place in heptane at reflux for **6** h (91%). Spectroscopic data show that complex **(2)** retains the structure of **(1)** with cis-carbonyls and trans-phosphorus nuclei and that complex **(3)** contains equivalent PMe₃ groups, both *cis* to the (Ph₂P) $\frac{31P}{P}$ nucleus.[†]

The chloride ligand of **(3)** is very labile as the cationic acetonitrile derivative **(4)** is obtained in *85%* yield as a bright yellow crystalline precipitate by reacting (3) with NaBPh₄ in methanol in the presence of acetonitrile. Complex **(4)** is stable in solution only in the presence of an excess of acetonitrile. The acetonitrile ligand of **(4)** is easily displaced at room temperature by carbon monoxide or the phosphorus ligands PMe₃ and P(OMe)₃ to afford the cationic derivatives (5) , (6) , and (7) in good yields (70–90%) (Scheme 1). The structures of the compounds have been established on the basis of their ¹H and ³¹P n.m.r. spectra.[†]

The acetonitrile derivative of **(4)** is not labile enough to be displaced by phenylacetylene. However, complex **(2)** reacts with phenylacetylene at room temperature either in dichloromethane with a slight excess of AgBF₄ (6 h) or in the more polar methanol-dichloromethane $(2:1)$ medium but in the presence of an excess of NaPF₆ (24 h). Yellow, crystallized complexes **(8a)** (60%) and **(8b)** (85%) were isolated, respectively (Scheme 2) **[(8b)**: ¹H n.m.r. (CDCl₃, 300 MHz) δ 7.93 (dd, =CHPh, ${}^4V_{\text{PH}}$ 4.3 and 5.1 Hz), 6.62 (d, PCH=, ${}^2V_{\text{PH}}$ 6.2 **Hz)].?** Under similar conditions, complex **(3)** leads to

t All compounds reported have microanalytical and spectroscopic data in accord with their assigned structures. *Selected spectroscopic data* for (2): i.r. (Nujol) $v(CO)$ 2013, 1961, $v(C=C)$ 1520 cm⁻¹, ¹H n.m.r. (CDCl₃, 80 MHz) δ 5.90 (d, PCH=, 2 J_{PH} 9 Hz), 1.67 (dd, 72.5 (PPh,), 13.7 p.p.m. (PMe,), ***Jpp** 119 Hz. PMe₃,² J_{PH} 10 Hz, ⁴ J_{PH} 1Hz); ³¹P-{1H} n.m.r. (CDCl₃, 32.38 MHz) δ

For (3): i.r. (Nujol) v(CO) 1917, v(C=C) 1510 cm⁻¹; ¹H n.m.r. $(CDCI₃, 80 MHz) \delta 6.05$ (d, PCH=, $^{2}J_{\text{PH}}$ 5 Hz) 1.04 (t, PMe₃, $|^{2}J_{\text{PH}}$ + $|{}^{4}J_{P'H}| = 8$ Hz); ${}^{31}P\cdot{}^{1}H$ n.m.r. (CDCl₃, 121.496 MHz) δ 79.1 (t, PPh₂), 6.7 p.p.m. (d, PMe₃), ^{2J}_{pp} 55 Hz.
For (4): i.r. (Nujol) v(CO) 1915, v(C=C) 1515 cm⁻¹, ³¹P-{¹H}

n.m.r. (CDCl₃, 32.38 MHz) δ 68.6 (t, PPh₂), 4.9 p.p.m. (d, PMe₃), **'Jpp** 59 Hz.

For (5): i.r. (Nujol) v(CO) 2030, 1970, v(C=C) 1525 cm⁻¹; ³¹P-{¹H} n.m.r. (CDCl₃, 121.496 MHz) δ 63.72 (dd, PPh₂, ²J_{PP} 78 and 58 Hz) 10.91 and 1.63 p.p.m. (dd, PMe₃, $2J_{PP}$ 61 Hz).

For **(6):** i.r. (Nujol) v(C0) 1925, v(C=C) 1505 cm-1; 31P-{lH} n.m.r. (CDCl₃ 121.496 MHz) δ 70.02 (dt, PPh₂) 13.36 (dt, PMe₃), 2.73 p.p.m. (dd, 2PMe₃), $2J_{PP}$ 83, 57, 53 Hz.

For (7): i.r. (Nujol) $v(CO)$ 1958, $v(C=C)$ 1525 cm⁻¹; ³¹P-{¹H} $(CDCI_3, 121.496 MHz)$ δ 139.17 [dd, 2P(OMe)₃], 72.08 (dt, PPh₂), 20.57 p.p.m. (dt, PMe₃), $2J_{PP}$ 94, 86, 68 Hz.

For **(8b):** i.r. (Nujol) v(C0) 2042, 1985 cm-1; 31P-{lH} n.m.r. $(CDCI₃, 121.496 MHz)$ δ 80.22 (PPh₂), 19.71 p.p.m. (PMe₃), ^{2J}_{PP} 101 H_z

For $(9a)$: i.r. (Nujol) v(CO) 1910, v(BF₄) 1055 cm⁻¹.

For $(9b)$: i.r. (Nujol) $v(CO)$ 1910, $v(PF_6)$ 840 cm⁻¹; ³¹P n.m.r. $(CD_3CN, 32.38 MHz)$ δ 78.2 (dd, PPh₂, $2J_{PP}$ 109 and 38 Hz), 20.3 and 1.48 p.p.m. (dd, PMe,, **2Jpp** 42 Hz).

Scheme 1. *Reagents and conditions:*, *i*, PMe₃, hexane, room temp.; *ii*, PMe₃, heptane; iii, NaBPh₄, MeCN; iv, CO, 1 atm.; v, $L = PMe₃$ or 2L, $L = P(One)_3$.

complexes **(9a)** (60%) and **(9b)** (65%) (Scheme **2) [(9b):** $13C-\{1H\}$ n.m.r. (CD₃CN, 75.469 MHz) δ 185.95 [d(dd) Fe-C(S)=, ${}^2J_{PC}$ 30, 27, 19 Hz), 178.88 [dd,=C(But)S, ${}^2J_{PC}$ $17,3J_{\text{PC}}$ 6 Hz), 143.46 (s, =CHPh)].[†] As spectroscopic data of similar complexes $(8-9)$ ^t only indicated some modification of the η^2 -Ph₂PCH=C(Bu^t)S ligand and the incorporation of phenylacetylene, a single crystal X -ray structural analysis was carried out on complex (9a).^{\ddagger} The ORTEP plot of the structure in Figure 1 shows that the formation of **(9)** results from the coupling of the sulphur atom of the β -phosphinothioketonate ligand with the vinylidene carbon atom arising from phenylacetylene. It is noteworthy that the PhCH=C(S)Fe skeleton is almost planar and orthogonal to the

 $\frac{1}{4}$ *Crystal data:* $C_{33}H_{44}P_{3}SBF_{4}OFe$, monoclinic, $P2_1/c$, $a = 17.001(5)$, $b = 11.142(2)$, $c = 20.425(4)$ \AA , $\beta = 113.49(2)$ °, $U = 3549.3(1.5)$ \AA ³, $Z = 4$, $D_c = 1.355$ g cm⁻³. Data collected on a Enraf-Nonius CAD-4 diffractometer with Mo- K_{α} radiation [6283 measured (2 $\theta \le 50^{\circ}$), 4432 used $(I \geq 3\sigma(I)$ reflections]. The structure was solved by Patterson methods and refined to $\dot{R} = 0.043$, $(R_w = 0.047)$. Anisotropic temperature factors for all the non-hydrogen atoms were used in the least-squares refinement with the exception of phenyl carbon atoms treated as D_{6h} rigid bodies. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $P(1)-C(4)=C(5)S$ ligand plane. The large Fe-C(2)-C(3) angle $[162.1(3)^\circ]$ indicates that the PhCH=C group, rather than a vinyl group, keeps the memory of a vinylidene ligand, even if the Fe–C(2) bond distance $[1.900(4)$ Å] is slightly longer than that of a Fe-C(carbene) bond.6

The sulphur-carbon bond coupling leading to complexes **(8)** and **(9)** corresponds to the nucleophilic addition of the sulphur atom to the electrophilic carbon of the vinylidene-iron intermediate. This reaction can be compared, but strongly contrasts with, the electrophilic addition of sulphur to the electron-rich Os^0 (=C=CHPh)(PPrⁱ₃)(η ⁶-C₆H₆) complex leading to an $Os^H(\eta^2-S-C=CHPh)$ moiety.⁸ It contrasts also, probably because of the distance of the reactive sites, with our previous studies⁶ showing that the $C(4)$ olefinic carbon atom of the ${Ph_2P-C(4)=C(R)S}$ Fe moiety is the most basic site. We are currently studying the potential of the new bidentate ligand.

Thanks are due to Mr. Dante Masi for technical assistance with the X -ray work.

Received, 19th May 1988; Corn. 8f01988F

References

- W. Keim, A. Behr, B. Kruber, B. Hoffmann, F. **H.** Kowaldt, V. Kiirschne;, B. Limbacker, and F. P. Sistig, *Organometallics,* 1986, *5,* 2356, and references therein.
- P. Braunstein, D. Matt, **Y.** Dusausoy, J. Fischer, A. Mitschler, and L. Ricard, *J. Am. Chem. SOC.,* 1981, **103,** 5115.
- **S.-E.** Bouaoud, P. Braunstein, D. Grandjean, D. Matt, and D. Nobel, *J. Chem. SOC., Chem. Commun.,* 1987,488.
- **P.** Braunstein, D. Matt, D. Nobel, and **J.** Fischer, *J. Chem. SOC., Chem. Commun.,* 1987, 1530.
- **P.** Robert, H. Le Bozec, P. H. Dixneuf, F. Hartstock, N. J. Taylor, and A. J. Carty, *Organometallics,* 1982, **1,** 1148.
- **A.** Samb, B. Demerseman, P. H. Dixneuf, and C. Mealli, *Organometallics,* 1988, **7,** 26.
- M. **I.** Bruce and A. J. Swincer, *Adv. Organomet. Chem.,* 1983,22, 59.
- R. Weinand and H. Werner, *J. Chem. SOC., Chem. Commun.,* 1985, 1145.